The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation.

نویسندگان

  • A Yu
  • J Dill
  • S S Wirth
  • G Huang
  • V H Lee
  • I S Haworth
  • M Mitas
چکیده

The structure of a single-stranded (ss) oligonucleotide containing (GTC)15 [ss(GTC)15] was examined. As a control, parallel studies were performed with ss(CTG)15, an oligonucleotide that forms a hairpin. Electrophoretic mobility, KMnO4 oxidation and P1 nuclease studies demonstrate that, similar to ss(CTG)15, ss(GTC)15 forms a hairpin containing base paired and/or stacked thymines in the stem. Electrophoretic mobility melting profiles performed in approximately 1 mM Na+ revealed that the melting temperature of ss(GTC)15 and ss(CTG)15 were 38 and 48 degrees C respectively. The loop regions of ss(GTC)15 and ss(CTG)15 were cleaved by single-strand-specific P1 nuclease at the T25-C29 and G26-C27 phosphodiester bonds respectively (where the loop apex of the DNAs is T28). Molecular dynamics simulations suggested that in ss(GTC)15 the loop was bent towards the major groove of the stem, apparently causing an increased exposure of the T25-C29 region to solvent. In ss(CTG)15 guanine--guanine stacking caused a separation of the G26 and C27 bases, resulting in exposure of the intervening phosphodiester to solvent. The results suggest that ss(GTC)15 and ss(CTG)15 form similar, but distinguishable, hairpin structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of trinucleotide repeats found in human inherited disorders on palindrome inviability in Escherichia coli suggest hairpin folding preferences in vivo.

Unusual DNA secondary structures have been implicated in the expansion of trinucleotide repeat tracts that are associated with several human inherited disorders. We present evidence consistent with the folding of these trinucleotide repeats into hairpin loops at the center of a long DNA palindrome in vivo. Our assay utilizes a palindrome in bacteriophage lambda, the center of which determines i...

متن کامل

Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases.

Expansions of trinucleotide repeats in DNA, a novel source of mutations associated with human disease, may arise by DNA replication slippage initiated by hairpin folding of primer or template strands containing such repeats. To evaluate the stability of single-strand folding by repeating triplets of DNA bases, thermal melting profiles of (CAG)10, (CTG)10, (GAC)10 and (GTC)10 strands are determi...

متن کامل

Twisting Right to Left: A…A Mismatch in a CAG Trinucleotide Repeat Overexpansion Provokes Left-Handed Z-DNA Conformation

Conformational polymorphism of DNA is a major causative factor behind several incurable trinucleotide repeat expansion disorders that arise from overexpansion of trinucleotide repeats located in coding/non-coding regions of specific genes. Hairpin DNA structures that are formed due to overexpansion of CAG repeat lead to Huntington's disorder and spinocerebellar ataxias. Nonetheless, DNA hairpin...

متن کامل

Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae.

Trinucleotide repeat (TNR) instability in humans is governed by unique cis-elements. One element is a threshold, or minimal repeat length, conferring frequent mutations. Since thresholds have not been directly demonstrated in model systems, their molecular nature remains uncertain. Another element is sequence specificity. Unstable TNR sequences are almost always CNG, whose hairpin-forming abili...

متن کامل

Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae

Expansions of trinucleotide repeats cause at least 15 heritable human diseases. Single-stranded triplet repeat DNA in vitro forms stable hairpins in a sequence-dependent manner that correlates with expansion risk in vivo. Hairpins are therefore considered likely intermediates during the expansion process. Unwinding of a hairpin by a DNA helicase would help protect against expansions. Yeast Srs2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 23 14  شماره 

صفحات  -

تاریخ انتشار 1995